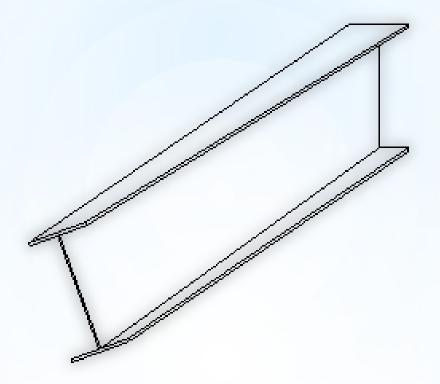
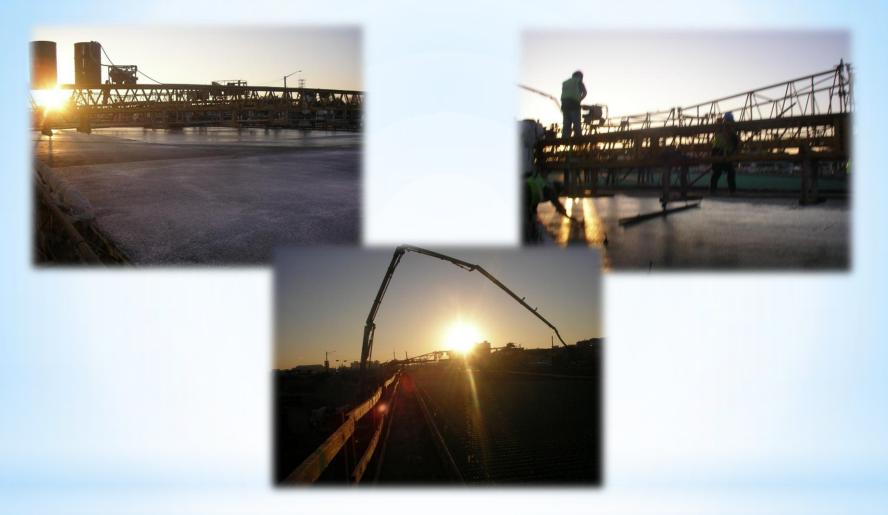
Lean on Bracing

Design and Construction

Design


- *What is Lean-on-Bracing?
- *Benefits of Lean-on-Bracing
- *How to design a Lean-on-Bracing System

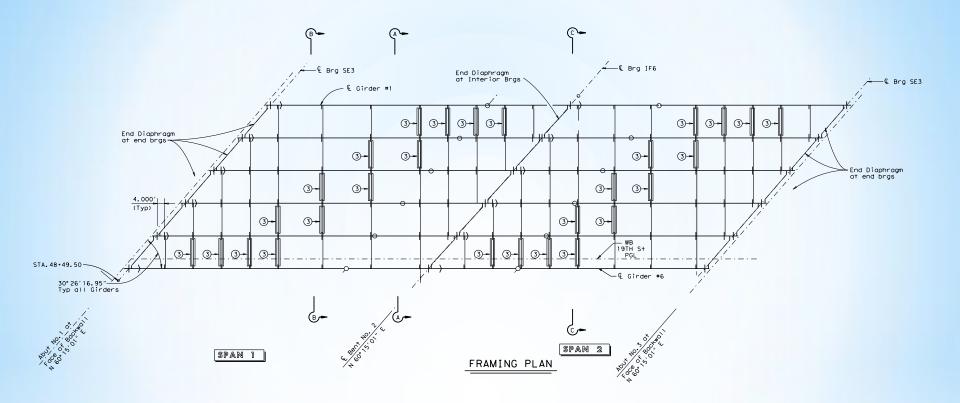
Construction & Research Results


- *US 82 Underpass @ 9th Street
- *US 82 Underpass @ 19th Street EB & WB

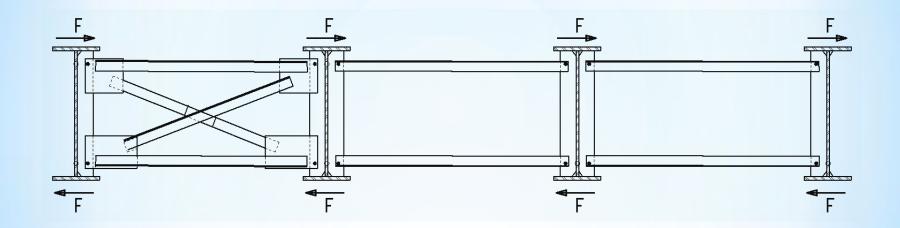
Research Report 1772-1

Lateral Torsional Buckling

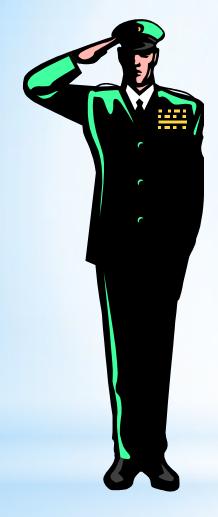
Critical Stage for Lateral Torsional Buckling

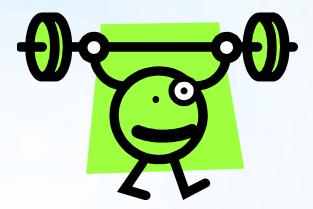

6

What is Lean-on-Bracing?


- *Fewer cross frames -Significant Cost Savings
- *Improved Fatigue Performance
- *Reduced Construction Timeline
- *Simplifies Future Inspections

Benefits




Cross Frame layout for US 82 Underpass @ 19th Street WB 2/15/2012

Force Pistribution

Lean-On-Bracing Stiffness & Strength Requirements

$$\frac{1}{\beta_b} + \frac{1}{\beta_g} + \frac{1}{\beta_{sec}} = \frac{1}{\beta_t}$$

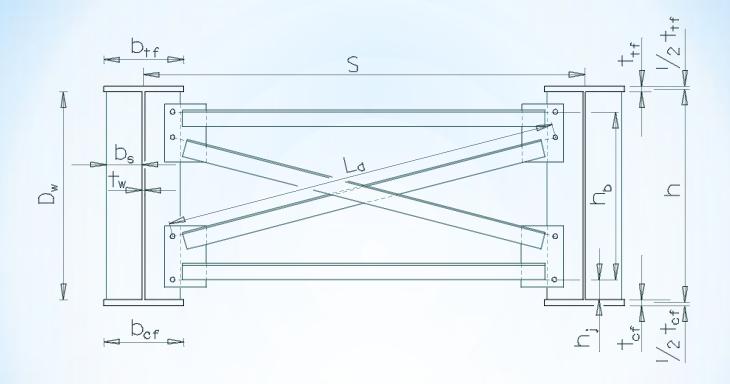
 B_t = Torsional system brace stiffness

 B_b = Brace stiffness

Β_{sec} = Cross Section stiffness (web distortional stiffness)

 $B_g = In-plane girder stiffness$

Brace System Stiffness


$$\beta_{ti} := \frac{1.2 \cdot L \cdot (Mu)^2}{C_{bb}^2 \cdot n \cdot I_{eff} \cdot E}$$

Ideal Total Stiffness

$$\beta_{t} := \frac{3.2 \cdot L}{C_{bb}^{2} \cdot n \cdot I_{eff} \cdot E} \cdot (M_{dl} + M_{constll})^{2}$$

Required System Stiffness

Torsional System Brace Stiffness

$$\beta_{sec} := 0.5 \cdot 3.3 \cdot \frac{E}{h_j} \cdot \left(\frac{h}{h_j}\right)^2 \cdot \left[\frac{1.5 \cdot h_j \cdot t_w^3}{12} + \left(\frac{t_s \cdot b_s^3}{12}\right)\right]$$

Cross Section Stiffness

$$\beta_g := \frac{12 \cdot \left(n_g - 1\right)^2 \cdot S^2 \cdot E \cdot I_X}{n_g \cdot L^3}$$

In-plane girder stiffness

$$\beta_{b1} := \frac{E \cdot S^2 \cdot h_b^2 \cdot A_b}{n_g \cdot L_d^3 + S^3 \cdot \left(\frac{n_g}{2}\right)^2}$$

Braces @ Mid-span

$$\beta_{b1} := \frac{E \cdot S^2 \cdot h_b^2 \cdot A_b}{n_g \cdot L_d^3 + S^3 \cdot (n_g - 1)^2}$$

Braces @ supports

Provided Brace Stiffness

$$\beta_{b2} := \frac{1}{\left(\frac{1}{\beta_t}\right) - \left(\frac{1}{\beta_g}\right) - \left(\frac{1}{\beta_{sec}}\right)}$$

$$A_b := \frac{{}^{\beta}b2}{{}^{\beta}b1}$$

Brace Area Required for Stiffness

$$\Phi_o := \frac{L_b}{500 \cdot h}$$

$$M_{br} = F_{br} h_b = \beta_t \Phi_o$$

$$F := \beta_t \cdot \frac{\Phi_o}{h_b}$$

Strength Requirements

$$F_d := \frac{n_g \cdot F \cdot L_d}{N_c \cdot S}$$
 Force in Diagonal

$$F_{S} := (n_g - 1) \cdot \frac{F}{N_c}$$

 $F_s := (n_g - 1) \cdot \frac{F}{N_c}$ Force in Struts @ Supports

$$\mathbf{F}_{\mathbf{s}} := \left(\frac{\mathbf{n}_{\mathbf{g}}}{\mathbf{N}_{\mathbf{c}} \cdot 2}\right) \cdot \mathbf{F}$$

 $F_s := \left(\frac{n_g}{N_c \cdot 2}\right) \cdot F$ Force in Struts @ Mid-Span

Angle Forces

Construction of Lean on Bracing

US 82 Underpass at 9th Street

US 82 Underpass at 9th Street

US 82 Underpass at 9th Street

US 82 Underpass at 19th Street EB & WB

US 82 Underpass at 19th Street WB

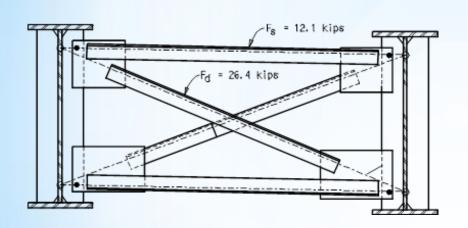
US 82 Underpass at 19th Street WB

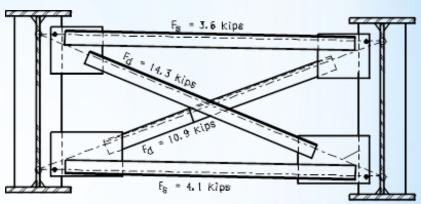
Reck Placement

Instrumentation & Live Load Testing

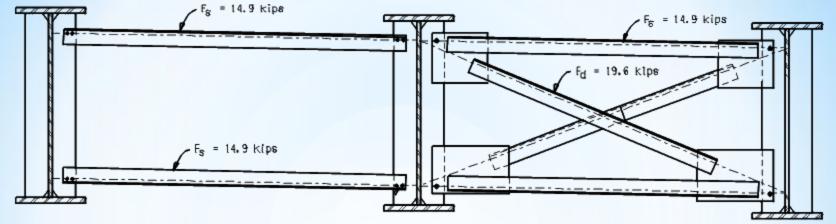
Cross Frame Instrumentation

Girder Instrumentation

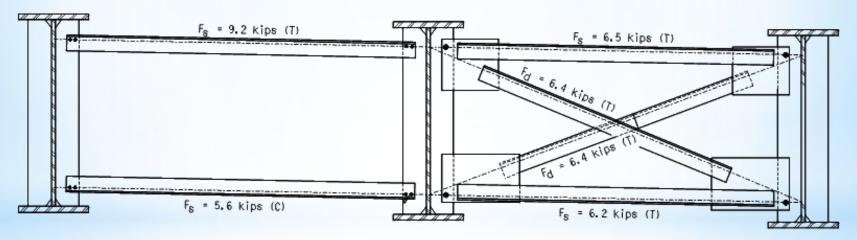



- *Changes in Strain
- *Girder Rotations
- *Girder Deflections

Recorded Measurements


Predicted

Actual



Mid-Span Cross Frame Forces

Predicted

Actual

End Cross Frame Forces

Live Load Testing

		Location		Location
Load Test	X2-DT (kips)	(ft.)	X2-DB (kips)	(ft.)
Staggered Ahead	0.7	350	-27.8	100
Staggered Back	0.45	220	8.26	220
Side-by-Side South	0.6	350	6.8	240
Side-by-Side North	0.6	140	8.9	120
End to End South	0.5	140	-25.7	120
End to End Central	-0.28	220	10.3	100
		Location		Location
Load Test	X3-DT (kips)	(ft.)	X3-DB (kips)	(ft.)
Staggered Ahead	18.5	140	-11.2	140
Staggered Back	11.7	150	-3.6	150
Side-by-Side South	11.4	140	-3.4	140
Side-by-Side North	-15.3	140	13.8	140
End to End South	5.5	190	-5.6	180
End to End Central	-14	140	36.1	140

Live Load Test Results

- *Design of Lean-on-Bracing is not difficult
- *Improves fatigue performance
- *Significant cost savings
- *Reduces construction time
- *It is a conservative method of torsional bracing that works

Questions?

- *Will Barnett, P.E.
- *Todd Helwig, Ph.D., P.E.
- *Anthony Battistini, M.S.E.

Photo Credits